Design and Evaluation of an experimental Apparatus for Quantitative Measurement of Wave-driven upwelling pump

AB18128 Takumi Fujita

Contents

- About the upwelling pump (p.3)
- Experimental apparatus (p.4~5)
- Measurements (p.6~7)
- Considerations (p.8~13)
- Proposal of experimental apparatus (p.14~15)
- Conclusions (p.16)

About the wave-driven upwelling pump

- The upwelling pump is connected to the float to transmit the movement of the waves to the pump.
- As the pump rises and accelerates, the water in the pipe pushes open the valve and pumps the water.
- It has the effect of lifting the water to the surface by containing more nutrients that exist in the deeper layers.

Experimental apparatus

- Uses motor and gearhead with an output of 90W and a reduction ratio of 30
- The amplitude can be changed by drilling hole in the gears.
- The fixture is made with a 3Dprinter and wrapped with a string to prevent leakage.

Measurements

- Measurement results for a wave period of 3 seconds
- The larger the amplitude, the greater the amount of upwelling.
- It's asymptotic to a constant amount over time.

Considerations

- Comparison of the amount of upwelling for each amplitude.
- There is a proportional relationship between the amplitude and the amount of upwelling.
- The upwelling rate increased by a factor of 1.44~1.66 when the amplitude increased by a factor of 3

- Comparison of the amount of upwelling for each wave period.
- There is an inverse relationship between wave period and the amount of upwelling.
- The upwelling rate increased by a factor of 1.32~1.52 when the wave period increased by a factor of 1/2

• Theoretical equation of upwelling rate $Q_{th} = \frac{\pi A H}{T} \left(-\frac{\Delta \rho}{\rho} g A T \right)$

(A : Pipe cross section, H : Amplitude, T : wave period)

(ρ : Density of water, $\Delta \rho$: Density difference,

g : Acceleration of gravity)

• Upwelling flow efficiency

$$\eta_u = \frac{Q_m}{Q_{th}}$$
 (Q_m: Measured flow, Q_{th}: Theoretical flow)

• Upwelling volume efficiency

$$\eta_{\rm V} = \frac{V_m}{V_{th}}$$
 (V_m: Measured volume, V_{th}: Theoretical volume)
 $V_{th} = AH$

Upwelling efficiency of each

Upwelling efficiency of each

Proposal of experimental apparatus

• Reduce the water head difference

• Packing optimization

^{油圧用パッキン} STシール(STタイプ)(ピストン専用) ^{標準树質: PTFE(PT111)}

断面形状

(▽▽▽:6.3S ▽▽:12.5S)

• Pump movement force measurement

使用範囲	標準材質								
	材質番号	常用最高圧	力 MPa {kgf/cẩ}	最高速度 温度 (m/s) (°C)					
	PTFE(PT111)	STタイプ	25 {250}	3	-30~100				

パッキンおよびみぞ寸法 (単位:mm)										指示コード	
D	d	H	G	D1	dw	D2	Gw	E	F	L	標準 (PT 111)
120	106	6.2	6.5	119.4	114	118	30	7	3	4	ST-120
125	111	6.2	6.5	124.3	119	123	30	7	3	4	ST-125
130	116	6.2	6.5	129.3	124	128	30	7	3	4	ST-130
135	121	6.2	6.5	134.3	129	133	30	7	3	4	ST-135
140	126	6.2	6.5	139.3	134	138	40	7	3	4	ST-140
150	136	6.2	6.5	149.3	144	148	40	7	3	4	ST-150
160	146	6.2	6.5	159.3	154	158	40	7	3	4	ST-160
170	150	9	10	169.3	164	168	50	11	4	6	ST-170
180	160	9	10	179.3	174	178	50	11	4	6	ST-180

Conclusion

- 1. Design and manufacture of experimental equipment for wave-driven upwelling pumps and flow measurement.
- 2. The relationship between the amount of upwelling and the period and amplitude of the waves was obtained from the measurements. The maximum upwelling rate was about 0.035 kg/s.
- 3. The upwelling effect was defined in flow rate and volume, respectively. The amplitude and period had an effect, with up to 10% and 16% results, respectively.
- 4. We studied the measurement error caused by water leakage and found that it affects the efficiency by about 6%, so we proposed an improvement plan.

Thank you for your attention